
PURPOSE: Early identification of prenatal alcohol exposure (PAE) and of those in need of services 

resulting from this exposure is an important public health concern. This study reviewed the 

existing literature on potential biomarkers and screening tools of PAE and its impact. 

SEARCH METHODS: Electronic databases were searched for articles published between 

January 1, 1996, and November 30, 2021, using the following search terms: (“fetal alcohol” or 

“prenatal alcohol” or “FASD” or “alcohol-related neurodevelopmental disorder” or “ARND” or “ND-

PAE”) and (“screening” or “identification” or “biomarker”). Duplicate articles were electronically 

eliminated. Titles and abstracts were reviewed for appropriateness, and selected articles were 

retrieved for further analysis. Additional articles were added that were referenced in the reviewed 

articles or identified from expert knowledge. Information about the characteristics of the sample, 

the biomarker or screening tool, and the predictive validity outcome data were abstracted. A 

narrative analysis of the studies was then performed on the data.

SEARCH RESULTS: A total of 3,813 articles were initially identified, and 1,215 were removed as 

duplicates. Of the remaining articles, 182 were identified as being within the scope of the review 

based on title and abstract inspection, and 181 articles were successfully retrieved. Of these, 

additional articles were removed because they were preclinical (3), were descriptive only (13), 

included only self-report of PAE (42), included only mean group comparison (17), were additional 

duplicates (2), focused on cost analysis (9), missed predictive validity data (24), or for other 

reasons (23). The remaining articles (n = 48) were abstracted. An additional 13 manuscripts 

were identified from these articles, and two more from expert knowledge. A total of 63 articles 

contributed to the review. 

DISCUSSION AND CONCLUSIONS: Biomarkers and screening tools of PAE and its impact fall 

short of ideal predictive validity characteristics. Higher specificity than sensitivity was found 

for many of the biomarkers and screening tools used to identify PAE and its impact, suggesting 

that current methods continue to under-identify the full range of individuals impacted by PAE. 

Exceptions to this were found in recent investigations using microRNAs related to growth and 

vascular development, proteomic changes associated with PAE, and combinations of markers 

estimating levels of various cytokines. Replications of these findings are needed across other 

samples to confirm the limited data available. Future research on biomarkers and screening 

tools should attend to feasibility and scalability of implementation. This article also recommends 

a systematic process of evaluation to improve early identification of individuals impacted by PAE 

so that harm reduction and habilitative care efforts can be implemented.
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Although the awareness of the negative impact of prenatal 

alcohol exposure (PAE) was already alluded to in ancient 

writings1 and the impact of ethanol embryopathy in animal 

models was studied as early as 1910,2 the conceptualization 

of a syndrome associated with PAE was not recognized within 

modern medicine until the mid-20th century.3,4 The syndrome 

or disorder was not uniformly accepted, however, and debates 

occurred within the field related to the operationalization 

of criteria for making a clinical diagnosis. In 1996, a group 

of scientists were brought together under the auspices of 

the Institute of Medicine (IOM) to delineate criteria for a 

diagnosis and a public health care plan for addressing the needs 

associated with the condition.5 This committee established the 

first consensus criteria for fetal alcohol syndrome (FAS) and 

recognized associated conditions, such as partial FAS (pFAS), 

alcohol-related birth defects (ARBD), and alcohol-related 

neurodevelopmental disorder (ARND). Various operational 

definitions of the IOM report’s diagnostic guidelines have been 

used to make a clinical diagnosis.6-17 In all cases, these diagnostic 

formulations struggle with identifying infants negatively 

impacted by PAE because few tools are available for assessing 

early brain development. In addition, many of the diagnostic 

formulations require input from complex medical teams 

evaluating different domains of impact, which are costly and 

heavily constrained by the number of professionals qualified to 

carry out the assessments. 

Estimates of the prevalence of prenatal alcohol-related 

disorders have varied dramatically over the years. In the initial 

IOM report, which reviewed several registries and clinic-based 

studies, the estimate of FAS was reported to be in the range of 

0.5 to 3 cases per 1,000 births;5 however, more recent estimates 

have been much higher. A large consortium that estimated the 

prevalence of fetal alcohol spectrum disorders (FASD)—an 

umbrella term used to refer to a range of conditions (FAS, pFAS, 

ARBD, and ARND) associated with PAE—in four communities 

within the United States using active case ascertainment yielded 

a conservative estimate of 11.3 to 50 per 1,000 births18 and 

an even higher weighted prevalence estimate of 31 to 99 per 

1,000 births. A review of more than 24 unique studies carried 

out throughout the world resulted in a prevalence estimate 

of 8 per 1,000 births with a 95% confidence interval of 5 to 

12 per 1,000 births.19 Variations in the estimates are likely 

related to differences in diagnostic criteria used to estimate 

the prevalence of the disorder across studies, use of active 

versus passive surveillance methods, and regional variations in 

drinking patterns. Historically, documentation of PAE has been 

difficult to obtain due to unreliability of the self-report of women 

drinking in pregnancy and potential social stigma associated 

with acknowledging alcohol use in pregnancy that can result 

in underreporting of PAE.20 The lack of recognition by various 

health professionals for the cluster of symptoms associated with 

the diagnosis of FASD also has contributed to under-recognition 

of those impacted by PAE.21 

In anticipation of this problem, the IOM report outlined the 

need for biological markers of alcohol teratogenesis to help with 

resolving variations in case definitions.5 The term “biomarker” 

refers to a broad collection of medical signs that can be used to 

identify a disease and can be measured accurately and reliably.22 

Biomarkers differ from medical symptoms, which are collected 

via patient report of their status and typically refer to biological 

measurements associated with the disease state. Biomarkers 

have the advantage of reducing ambiguity in patient reporting 

of symptoms but are only useful if they can validly predict a 

clinical endpoint—that is, if they can appropriately identify the 

disease state and avoid misclassification of individuals who do 

not have the condition. In the case of PAE, the clinical endpoint 

may be the identification of an alcohol-exposed pregnancy 

or of those negatively impacted by their exposure. Ideally, 

the identification would occur as early as possible during or 

after pregnancy to enhance opportunities for intervention. 

Identification during pregnancy could lead to harm reduction 

efforts, whereas early postnatal recognition of infants 

negatively impacted by PAE would increase the opportunities 

for access to habilitative care to optimize early brain 

development during phases of high neuroplasticity.23 In addition 

to biomarkers, screening tools that sample symptoms of the 

disease state, or some combination of these, may be useful in 

identifying those negatively impacted by PAE. The development 

of innovative methods and tools that can be used to reduce 

the costly diagnostic assessment burden that constrains the 

identification of individuals in need of services are of particular 

value as such tools would allow for improved scalability and 

implementation in resource-poor areas of the world. 

This review attempts to clarify potential advancements in the 

identification of biomarkers of PAE or its impact that could be 

used to improve early recognition of those adversely affected 

since the original IOM report’s call for the development of 

biomarkers of alcohol-related teratogenesis. To this end, the 

authors conducted a review of the literature on the predictive 

validity of biomarkers or screening tools for identification of PAE 

or FASD and performed a narrative analysis of the findings.

Search Methods

Studies were considered for review if the article was published 

or available online between January 1, 1996, the first day of the 

IOM report publication year, and November 30, 2021. The target 

population consisted of individuals of any age who had been 

diagnosed with PAE or with a clinical disorder associated with 

PAE (i.e., FAS, pFAS, ARND, ARBD, and neurobehavioral disorder 

associated with prenatal alcohol exposure [ND-PAE]).24 

In addition, the article’s focus had to include screening or 

identification of PAE or one of the clinical disorders associated 

with PAE. The article also had to include empirical data related 
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to the screening or identification procedures and provide 

some aspect of the biomarker’s predictive characteristics. 

Predictive validity characteristics evaluated in each study 

included sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), accuracy, and area under the 

curve (AUC). Sensitivity refers to the probability that the test 

is positive when the condition is present. Specificity refers to 

the probability that the test is negative when the condition is 

not present. PPV refers to the probability that the condition is 

present when the test is positive. NPV refers to the probability 

that the condition is not present when the test is negative. 

Accuracy refers to the overall probability that the case is 

correctly classified from the test. Criterion descriptors for the 

predictive values are as follows: 90–100%, Excellent; 80–89%, 

Good; 70–79%, Fair; and below 70%, Poor. Finally, AUC is 

derived from creating receiver operating curves by plotting the 

true positive rate (sensitivity) relative to the false positive rate 

(1-specificity). The AUC references the area on the graph created 

by the regression line relative to the chance rate of prediction. 

Values of 1 would indicate perfect condition, and values of 0.50 

would indicate chance prediction using a binary (yes/no) model. 

Definitions for the first five predictive validity characteristics 

and formulas for computing them are outlined in Figure 1, a 

confusion matrix that illustrates the classic prediction modeling 

used when comparing a test’s ability to identify a given state 

or condition. The confusion matrix is a contingency table that 

presents the frequency of individuals categorized across two 

dimensions, the actual true state of whether or not an individual 

has a disease or condition, and the predicted state derived from 

the results of the testing indicating the presence of the disease 

or not.

To identify studies, the following electronic databases were 

searched: PsycInfo, PubMed, Medline, Web of Science, ERIC, and 

the Cochrane Central Register of Control Trials. Search terms used 

were [“fetal alcohol” or “prenatal alcohol” or “FASD” or “alcohol-

related neurodevelopmental disorder” or “ARND” or “ND-PAE”] 

and [“screening” or “identification” or “biomarker”]. Document 

type was limited to “articles,” but no language restrictions were 

placed on the initial search. Despite extensive work in animal 

models of PAE on various promising biomarkers, only articles using 

humans were selected as the focus of this study was to analyze the 

current knowledge of potential tools that could be used to identify 

people affected by PAE. Preclinical biomarker methodologies still 

need translation into human populations to effectively evaluate 

their predictive characteristics. 

References were then merged into Endnote X9.3.1 and 

screened for duplicates. The remaining studies were then 

reviewed to eliminate nonempirical studies (i.e., reviews or 

editorial articles) and those involving training of professionals 

to screen. Articles were also excluded if they established group 

differences without analyzing the predictive validity of the 

outcome or were descriptive of PAE in a given population. While 

establishing group differences may be a first step in establishing 

the utility of a biomarker or screening tool, such differences 

do not establish a tool’s predictive utility. IQ tests are a classic 

example of tools that consistently demonstrate group differences 

between PAE groups relative to community samples without 

exposure;25 however, they have little predictive utility when used 

independently as a result of the wide range of outcomes seen in 
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Figure 1. Confusion matrix. The confusion matrix provides definitions of the various predictive validity terms within a contingency 
table where cases are plotted relative to the prediction variable and the designated “true state.” True state refers to whether the 
individual has a disease or condition (positive) or does not have a disease or condition (negative), and the test reflects the outcome  
of the criterion used to indicate a positive or negative prediction of disease state. Sensitivity refers to the probability that the test is 
positive when the condition is present. Specificity refers to the probability that the test is negative when the condition is not present. 
PPV refers to the probability that the condition is present when the test is positive. NPV refers to the probability that the condition 
is not present when the test is negative. Accuracy refers to the overall probability that the case is correctly classified from the test. 
Note: NPV, negative predictive value; PPV, positive predictive value.
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individuals with PAE and its associated overlap with comparison 

samples. A flow diagram (Figure 2) outlines the various steps in 

screening the articles and the number of articles at each step.

Search Results

A total of 3,813 articles were initially captured by the search, and 

1,215 were identified as duplicates. Article titles and abstracts 

were then screened for inclusion, and an additional 2,412 were 

eliminated, leaving 181 full articles that were retrieved. One 

article could not be retrieved. The full articles were reviewed 

for appropriateness, and 133 articles were excluded for the 

following reasons: three were preclinical, 13 were descriptive 

only, 42 related to predictive utility of self-report methods of 

PAE, 17 were identified as group comparison studies, two were 

additional duplicates not identified electronically, nine were 

related to cost analysis, and 24 after further review did not have 

predictive data. This left 48 articles; however, upon further 

review, 13 additional articles were identified that were not 

retrieved by the search. Moreover, two additional articles were 

identified based on expert knowledge. This resulted in 63 articles 

included in the review. 

Biomarkers and screening tools were categorized as predicting 

prenatal exposure status or alcohol-related teratogenesis in 

the offspring. Appendix 1 provides details on the articles that 

involved biomarker predictors of PAE status, and Appendix 2 

provides details on biomarker predictors of FASD and associated 

symptoms. Both appendices list the articles in alphabetical 

order by the first author’s last name as many involve the 

evaluation of several biomarkers and predictors within one study. 

Appendix 3 provides details on other screening tool predictors 

of FASD and associated symptoms, including craniofacial 

features, neurophysiological responses, neuroimaging analyses, 

questionnaire responses, and various test batteries assessing 

performance. As typically only one screening tool was evaluated 

within a study, Appendix 3 groups studies by screening tool 

category and then lists studies alphabetically.

Records identified from
databases (n = 3,813)

Identification

Screening

Included

Identification of studies via databases and registers

Reports assessed for eligibility
(n = 181)

Records removed before screening:
Duplicate records removed

 (n = 1,215)

Reports excluded:
Preclinical (n = 3)
Descriptive/No comparison 

(n = 13)
Self-report (n = 42)
Group comparison (no 

predictive data) (n = 17)

Duplicates not identified 
electronically (n = 2)

Cost-analysis (n = 9)
Lack of predictive validity 

data (n = 24)
Other (n = 23)

Records screened
(n = 2,598)

Studies included in review
(n = 48)

Records excluded
(n = 2,412)

Reports sought for retrieval
(n = 182)

Studies included in review
(n = 63)

Reports not retrieved
(n = 1)

Additional publications in press  
during review, identified by experts

Figure 2. Flow diagram of the steps in the screening process for this review.
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separately (see Figure 3A) suggests that their specificity (range, 

43%–100%; median, 83%) as biomarkers is significantly better 

than their sensitivity (range, 4%–100%; median, 65%); overall 

accuracy estimates fell in the poor to fair range (range, 62%–79%; 

median, 68%). Estimates of the AUC values were variable, 

ranging from poor to excellent (range, 0.52–0.93; median, 0.71). 

There was no clear pattern that a summation of several FAEE or 

any one FAEE provided better prediction.

Other biomarkers assessed included gamma-

glutamyltransferase (GGT),35,41-46 carbohydrate-deficient 

transferrin (CDT),38,41-46 ethyl glucuronide (EtG),30,31,35,38-41,43,44,47-52 

ethyl sulfate (EtS),31,35,41 and mean corpuscular volume (MCV).45 

GGT, CDT, and MCV provide an indirect assessment of the 

impact of heavy and chronic alcohol use on the mother’s 

metabolic functioning. Estimates of GGT can be obtained from 

plasma, urine, and hair, whereas CDT and MCV estimates are 

only obtained from plasma. EtG and EtS are metabolites of 

ethanol that are present in hair, meconium, urine, and nails. 

Predictive validity information was found for seven studies using 

GGT (10 point estimates), seven studies using CDT (13 point 

estimates), and one study using MCV (three point estimates). 

Fifteen studies with 24 point estimates were identified for 

EtG. Three studies evaluated EtS,31,35,41 but only two provide 

estimates of EtS alone,35,41 whereas one study evaluated EtS 

in combination with EtG.31 Consistently, these biomarkers 

provided fair to excellent specificity—EtG (range, 71%–100%; 

median, 87%); EtS (range, 97%–100%; median, 98%); CDT (range, 

71%–100%; median, 95%); GGT (range, 71%–100%; median, 

95%); and MCV (both values 100)—but exceptionally poor 

sensitivity—EtG (range, 0%–97%; median, 23%); EtS (range, 

7%–15%; median, 7%); CDT (range, 5%–40%; median, 13%); GGT 

(range, 11%–50%; median, 25%); and MCV (values of 15 and 20). 

One study evaluated postnatal serum levels of insulin-like 

growth factor-II (IGF-II) as predictors of FASD status in children 

or youth who either had a history of meconium FAEE levels 

above 2 nmol/g or had been adopted from Eastern European 

countries with confirmed PAE (two point estimates).27 The 

participants were assessed for IGF-II levels below the 5th 

percentile. IGF-II levels below the 5th percentile had excellent 

specificity (99% and 100%, respectively) for predicting FASD 

status, but very poor sensitivity (13% and 39%, respectively) and 

overall accuracy (24% and 47%, respectively). 

One study provided limited information on aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT), 

which are both markers of impaired liver functioning, as 

biomarkers of PAE.46 Only AUC values were provided, and these 

were poor (0.47 and 0.54, respectively). 

Phosphatidylethanol (PEth) is a more recent biomarker of 

ethanol metabolism that has been evaluated in maternal and 

infant plasma and dried blood spots.35,41,52-55 Six different studies 

found considerable variability in the predictive characteristics 

of PEth depending on the source of the PEth. Assays of maternal 

blood as well as plasma from the umbilical cord yielded a wide 

Predictive validity information was obtained from information 

explicitly stated in the text or tables or was computed from 

information regarding cell sizes in the predictive validity tables 

provided in the article or as described in the text. Computations 

were performed using MedCalc software for diagnostic test 

evaluation (MedCalc Software Ltd, Ostend, Belgium). Predictive 

validity values are presented as percentages with the exception 

of AUC values, which were reported in proportions of accurate 

diagnostic classification with values of 0 to 1.00.

The sensitivity, specificity, accuracy, and AUC values were 

plotted on radial curves for each type of biomarker, with each 

type of predictive characteristic color-coded (see Figure 3). AUC 

values were multiplied by 100 to facilitate plotting them on the 

same curves as the other predictive values. The obtained values 

for each of the validity characteristics were provided for each 

unique outcome of the study. For studies that compared the 

biomarker response to common outcomes defined differently 

(e.g., self-report using different assessment tools), only the 

obtained values reflecting the least and greatest value were 

included to reflect the range of validity. Radial curves plot 

individual values of these predictive parameters along a curve 

with increasing number of indicators smoothing out until the 

curve is circular. The strength of the prediction is reflected along 

the radius of the circle so that values in the outer region reflect 

increased predictive validity and those in the inner region reflect 

lower levels of predictive validity. Radial curves allow for a quick 

visual analysis of each of the predictive characteristics for each 

type of biomarker or screening tool and the variation across 

the findings. Curves with more points along the outer ring with 

less deviance inward reflect increased predictive status and 

uniformity in the prediction. 

Biomarkers 
Biomarkers of PAE were derived from various biological samples 

obtained from mothers, including blood (plasma and dried blood 

spots), urine, hair, and fingernail clippings. Sources of biomarkers 

evaluated in the infant included blood (plasma and dried blood 

spots) and meconium. Additional biomarkers of PAE or its effects 

were obtained from placental tissue and the umbilical cord. 

Biomarkers were evaluated against group status determined 

from maternal self-report of alcohol consumption and the 

offspring’s FASD symptomatology or diagnosis. 

One group of biomarkers evaluated included fatty acid 

ethyl esters (FAEE) derived from hair or meconium. FAEE are 

metabolites of ethanol and provide a long-term estimate of 

alcohol consumption over the course of a pregnancy. They were 

analyzed either in a collective grouping of FAEE or individually 

(i.e., ethyl stearate, ethyl linoleate); in total, 30 obtained values 

or point estimates of predictive validity were provided across 12 

studies.26-37 In three additional studies, FAEE were used as the 

outcome to assess other biomarker predictors.38-40 The radial 

graph of the predictive characteristics of FAEE in combination or 
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Figure 3. Radial curves of PAE biomarkers (A) and of biomarkers and screening tools for PAE and its impact (B). Radial graphs indicate the specificity (gray 
curves), sensitivity (black curves), accuracy (red dotted curves), and area under the curve (AUC) values (gold curves) relative to the criterion evaluated in the 
study. Point estimates or the obtained values of the validity characteristics were provided for each unique outcome of the study. For studies that compared 
the biomarkers' response to common outcomes defined differently (e.g., self-report using different assessment tools) only the point estimates reflecting 
the least and greatest value were included to reflect the range of validity. AUC values were multiplied by 100 to facilitate plotting them on the same curves 
as the other predictive values. The radial graph plots the various findings along curves with increasing prediction (0–100). Radial curves allow for a quick 
visual analysis of each of the predictive characteristics for each type of biomarker or screening tool and the variation across the findings. Greater numbers 
of findings displayed in a graph result in smoothing of the curve. The strength of the prediction is reflected along the radius of the circle so that values in 
the outer region reflect greater predictive validity and those in the inner region reflect lower levels of predictive validity. Curves with more points along 
the outer ring with less deviance inward reflect increased predictive status and uniformity in the prediction. Separate colored lines are used to connect the 
points along with curve for each of the predictive characteristics. Criterion descriptors for the values plotted above are as follows: 90–100, Excellent; 80–89, 
Good; 70–79, Fair; and below 70, Poor.

Note: ALT, alanine aminotransferase; angR, angR protein; ANX-A4, annexin-A4; AST, aspartate aminotransferase; AUC, area under the curve; BL, blood level; 
CCM-3, cerebral cavernous malformation 3 (a protein); CDT, carbohydrate-deficient transferrin; a protein; DBS, dried blood spots; EtG, ethyl glucuronide; 
EtS, ethyl sulfate; FAEE, fatty acid ethyl esters; GGT, gamma-glutamyltransferase; IGF-II, insulin-like growth factor-II; MCV, mean corpuscular volume; 
miRNAs, micro RNAs; NPV, negative predictive value; OLL, oleate + linoleate + linolenate; PEth, phosphatidylethanol; PPV, positive predictive value; umc, 
umbilical cord; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; WB, Western Blotting Procedures.
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Several miRNAs (n = 21) were identified as differing between  

the exposed–affected group and both other groups, and a 

random forest analysis was used to predict group membership 

while controlling for other group differences (i.e., maternal 

smoking). Seven of the top 10 variables retained in the initial 

predictive model were miRNAs. The most common miRNAs 

identified were likely to influence downstream pathways related 

to fetal and placental growth. Specificity was excellent (91%) 

and sensitivity (82%) was good for miRNA levels obtained in 

pregnancy; however, both specificity (74%) and sensitivity  

(77%) were only fair for changes in the miRNA levels over the 

course of the pregnancy. Although this was only one study, the 

findings suggest that assessments of levels of specific miRNAs 

obtained in pregnancy may improve sensitivity in predicting  

PAE-related outcome compared with other biomarkers that 

could be obtained in pregnancy.

Screening Tools
Screening tools were divided into five types of assessments, 

including facial features, neurophysiological responses in infants 

and older children, neuroimaging, questionnaire responses, 

and performance measures (see Appendix 3). In some cases, 

combinations of facial data and performance measures 

were used in predictive modeling; these are included in the 

performance measure section of Appendix 3. 

Facial features 
Eight studies have explored facial features as key predictors of an 

FASD-related diagnosis using in-person measurements and two-

dimensional (2D) and three-dimensional (3D) photographs.58-65 

Specificity values were variable, ranging from poor to excellent, 

with only a couple of studies reporting levels in the fair to poor 

range (range, 43%–100%; median, 86%). Sensitivity levels also 

were in the good to fair range (overall range, 43%–100%; median, 

92%), with the exception of one study where sensitivity using 

the facial analysis software of 2D pictures was in the poor range. 

Accuracy for prediction was typically in the fair to good range 

(range, 79%–100%; median, 93%). Advancing technology from 

in-person measurement to 3D computerized configural methods 

did not necessarily result in improved predictive characteristics, 

but comparisons are complicated because samples were from 

different countries (i.e., United States, South Africa, Germany, 

and Finland), and different methods were used for defining the 

outcome (variations of FAS and FASD, heavy alcohol-exposed) 

and reporting predictive results. 

More recently, one study evaluated the use of a schema 

that coded alterations to ocular development to differentiate 

individuals with a clinical diagnosis of FASD.66 The coding schema 

captured elements of visual acuity, refraction, strabismus/

binocular function, and ocular structural abnormalities, with 

each area being coded from 1 to 4. Cut-off values of the total 

score (10 and 9) were evaluated relative to healthy controls; 

children with attention-deficit/hyperactivity disorder (ADHD); 

range of specificity (range, 9%–100%; median, 96%), sensitivity 

(range, 0%–100%; median, 22%), and overall accuracy (range, 

51%–91%; median, 71%). Tests of dried blood spots taken from 

infants also had variability in their predictive characteristics 

but were generally not as good as maternal blood and plasma 

obtained from the umbilical cord—specificity (range, 42%–100%; 

median, 95%); sensitivity (range, 32%–63%; median, 52%); and 

overall accuracy (range, 48%–50%; median, 50%). 

Collectively, these results regarding the validity of 

biomarkers for predicting PAE status suggest that a positive 

response was not very effective in identifying the full range of 

individuals who self-reported prenatal alcohol use and missed 

many affected individuals. This was also true of the studies 

evaluating the predictive modeling of the impact of PAE (see 

Appendix 2). Combining biomarkers did not result in substantial 

improvements in the predictive characteristics (see Figure 3A, 

bottom right panel). As has been observed in other biomarker 

analyses, there appeared to be a trade-off such that as sensitivity 

of combined biomarkers increased compared with single 

biomarker predictors, specificity was reduced.

A promising biomarker with limited predictive data reported 

in one study was proteins and cytokines found in the placenta.56 

Specifically, proteins that influence angiogenesis as well as pro-

inflammatory and anti-inflammatory cytokines were evaluated 

in a group with a history of PAE. The study only provided 

information on AUC, which reflects the integration of sensitivity 

and specificity characteristics; however, these data were in 

the fair to excellent range (range, 0.70–1.00; median, 0.79). In 

contrast to previous biomarker data, integration of different 

predictors resulted in improved prediction. Combined analysis of 

the levels of three proteins (i.e., ANX-A4, CCM-3, and VEGFR2) 

yielded an AUC of 1.00, and a combined analysis of another six 

proteins (VEGFR1, angR, VEGF-A, VEGF-C, VEGF-D, and beta-

fibroblast growth factor) resulted in an AUC of 0.94. Combined 

cytokine levels also had good to excellent AUC values, with 

six pro-inflammatory cytokines (IL-1-beta, IL-2, IL-8, IL-12p70, 

interferon-gamma, and tumor-necrosis factor alpha) yielding an 

AUC value of 0.92 and four anti-inflammatory cytokines (IL-4, 

IL-6, IL-10, and IL-13) resulting in an AUC value of 0.83.56 

Finally, circulating microRNAs (miRNAs) in maternal blood, 

which reflect epigenetic changes in response to PAE, have been 

explored as a potential biomarker in a sample of Ukrainian 

mother-infant dyads.57 Levels of miRNAs were compared among 

pregnant women without PAE; pregnant women with heavy 

PAE whose children were impacted; and pregnant women with 

heavy PAE whose children were not impacted in either growth, 

dysmorphology, or brain development. Heavy PAE was defined 

as weekly heavy episodic or binge drinking (i.e., five or more 

standard drinks), five or more episodes of three to four standard 

drinks, or 10 episodes of one to two standard drinks. Impact of 

PAE on the offspring was assessed by trained physicians who 

completed a dysmorphology assessment and by psychologists 

who completed a neurodevelopmental evaluation with the child. 
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Findings for COR were not reported in terms of sensitivity, 

specificity, and overall accuracy but were reported in terms 

of PPV, NPV, and AUC values in two different articles using 

overlapping samples of Ukrainian mother-infant dyads.69,70 

Using the key features of COR (i.e., speed of the response, 

average trough), a PPV of 82%, an NPV of 62%, and an AUC 

value of 0.81 were reported in one of the studies for predicting 

neurodevelopmental impairment at 12 months.70 Only small 

incremental gains were obtained when including maternal 

drinking information in the model. In the second study, an index 

score derived from the visual COR data had an AUC value of 

0.77 for predicting later preschool FASD status.69 These results 

suggest that early neurophysiological responses may be useful in 

improving identification of individuals with neurodevelopmental 

impairment in infancy, which has often been a key factor limiting 

early diagnosis. 

Neurophysiology with older children
Neurophysiological responses assessed in older children 

have included auditory evoked potentials and eye-tracking or 

saccadic eye movements. One study evaluated auditory evoked 

potentials, which assess the time it takes for a signal to travel 

along the auditory nerve track in response to sound stimuli.71 

Auditory evoked potentials by themselves had fair sensitivity 

(79%) and poor specificity (43%) and overall accuracy (61%). 

However, when various indices of P300 responses were 

combined (e.g., latency, magnitude), increased differentiation 

of individuals with FASD from individuals with Down syndrome 

was found (sensitivity, 79%; specificity, 86%; and overall 

accuracy, 82%). 

Eye-tracking movements also have been used to identify 

children impacted by PAE.72 Two studies provided data regarding 

predictive validity of eye-tracking measures in individuals with 

FASD.73,74 Accuracy ratings ranged from poor (65%) to excellent 

(90%). Combining eye-tracking information with data obtained 

from diffusion tensor imaging and neurobehavioral testing 

resulted in improved accuracy in one study (range of 65%–76% 

improved to 85%).73 Eye-tracking movements also have been 

used to predict the impact of other neurodevelopmental 

disorders,75,76 suggesting the importance of studies that attempt 

to establish differential predictive validity for the effects of PAE 

relative to other neurodevelopmental disorders (e.g., autism). 

This likely is also true of the infant neurophysiological measures 

(i.e., COR and eye-blink conditioning), which also have been used 

to determine mean group differences between other clinical 

groups and typically developing controls.77,78

Neuroimaging
Three neuroimaging studies provided predictive data for the 

impact of PAE.73,79,80 Using weighted volumetric scores of specific 

brain regions, specificity was good (88%), but sensitivity was 

still in the poor range (64%).80 The combination of four key 

features of diffusion tensor imaging also provided relatively 

children who were born prematurely (moderate to late); and 

children with Silver-Russell syndrome, a genetic condition with 

growth impairment and neurodevelopmental compromise.67 

Similar to attempts to capture facial features, specificity 

was good to excellent (88%–100%), but sensitivity was poor 

(43%–57%). AUC estimates were variable, ranging from 0.60 to 

0.92, with the higher estimate reflecting comparisons to healthy 

controls.

Infant neurophysiology
Early identification of alcohol-related brain impairment has been 

attempted using indices of infant neurophysiological responses, 

including eye-blink conditioning68 and cardiac orienting response 

(COR).69,70 These procedures use physiological responses in 

the context of a learning paradigm that can be implemented 

with infants. For eye-blink conditioning, classical conditioning 

is used where an unconditioned stimulus (i.e., puff of air) 

that elicits a reflexive eye blink is paired with a conditioned 

stimulus (i.e., auditory tone or picture) over repeated trials. 

After many pairings, the conditioned stimulus is then able to 

elicit the eye-blink response. Rate of learning is assessed by 

the percentage of pairing trials of the conditioned stimulus 

with the unconditioned stimulus needed before the eye blink 

is elicited by the conditioned stimulus in the absence of the 

unconditioned stimulus. In the case of COR, heart rate responses 

are monitored while stimuli (i.e., auditory tone or picture) are 

presented over several trials, referred to as habituation trials, 

and then after presenting novel but similar stimuli over several 

trials (dishabituation trials). Heart rate typically decelerates 

in response to novel information and returns to baseline over 

the course of several habituation trials; it decelerates again in 

response to the second novel stimulus. The magnitude of the 

deceleration in the first three habituation trials is believed to 

reflect the infant’s encoding of stimuli, whereas the magnitude 

of the first three dishabituation trials reflects the infant’s ability 

to differentiate the first and second related stimuli, indexing 

early memory functioning. These methods are advantageous as 

standardized early assessments of cognitive functioning often 

are not adequate in assessing alcohol-related brain impairment.

Eye-blink conditioning was reported in one study that 

provided data for its predictive utility relative to FAS and to 

a broader spectrum of individuals with heavy PAE, defined 

as averaging at least 1.0 oz absolute alcohol per day or ≥ five 

standard drinks per occasion in the first trimester of pregnancy; 

and a group defined as having FASD.68 Eye-blink conditioning 

had a sensitivity of 100% for FAS prediction, but this fell to 

70% for prediction of a broader spectrum of heavy PAE and 

FASD. Specificity was comparable for both predictive models 

at 75%. Overall accuracy was 82% for predicting FAS and 72% 

for predicting heavy PAE/FASD. The PPV value was 87% for 

heavy PAE/FASD and 63% for FAS alone, and NPV was 51% for 

predicting heavy PAE/FASD and 100% for FAS alone. 



Vol 43 No 1 | 2023 9

Discussion and Conclusions 

Identifying children who have been prenatally exposed to alcohol 

or, more importantly, have been negatively impacted by their 

exposure continues to be an important area of investigation. 

Although a range of biomarkers and screening tools have been 

explored, there is no agreed-upon procedure or method that 

provides excellent sensitivity, specificity, and overall accuracy, 

suggesting the need for continued research. A general theme 

found in the existing literature is higher specificity then 

sensitivity for many of the biomarkers and screening tools 

used to identify PAE and its impact. This means that although 

researchers and clinicians often have confidence when they 

identify PAE or its impact, they struggle with capturing the full 

range of individuals impacted. Exceptions to this were found in 

recent investigations of biomarkers of PAE using miRNAs related 

to growth and vascular development,57 proteomic changes 

associated with PAE,56 and combinations of markers estimating 

levels of various cytokines.56 However, replications of these 

findings across other samples are needed to confirm the limited 

data currently available on the predictive characteristics of these 

biomarkers. 

For predicting the outcomes of alcohol teratogenesis, facial 

features operationalized using varying methods (i.e., in person, 

2D, or 3D) provided relatively high sensitivity, specificity, 

and accuracy, but a few point estimates were less effective. 

Neurophysiological responses assessed in infancy and later 

childhood were able to differentiate individuals impacted 

by PAE, but the upper limits of prediction were in the fair to 

good range. Moreover, there was some indication that these 

responses were better at defining pFAS/FAS rather than the full 

spectrum of FASD, including heavy PAE. Neuroimaging methods, 

including volumetric and diffusion tensor imaging, also had high 

specificity but poor sensitivity, similar to biomarkers of PAE 

alone. Parent and professional responses to questionnaires had 

both good sensitivity and specificity, with the exception of one 

comparison that attempted to discriminate specific subgroups of 

FASD. This increased sensitivity relative to other biomarkers and 

screening tools may be biased by the fact that all studies in this 

area involved clinical FASD samples, which may reflect shared 

variance associated with the parent seeking treatment for the 

child. Replications in prospective cohorts of exposure may be 

helpful in clarifying this potential bias in predictive validity. 

Child performance measures had varying ranges of success in 

predicting those impacted by PAE, which seemed to vary as a 

function of inclusion of other biomarkers and the nature of the 

comparison sample utilized in the prediction. 

Limitations in the Existing Literature
The definition of the criterion to be predicted was problematic 

across studies. Maternal report of PAE or heavy PAE was 

operationalized using multiple different methods that were 

poor accuracy (67%) in predicting an FASD diagnosis.73 Excellent 

specificity (95%) was reported for measurement of the “hook” 

area of the corpus callosum, but sensitivity of this measurement 

was poor (52%), suggesting that this method did not identify 

those impacted by PAE at better than chance levels.79 This 

suggests that, like other biomarker prediction of PAE and PAE 

impact, prediction based on neuroimaging findings provides a 

clear signal of PAE or its impact, but is not sufficiently sensitive 

to capture the range of impact commonly seen in individuals 

exposed to alcohol.

Parent questionnaire measures
Six identified studies reported predictive characteristics of 

caregiver or provider responses to a questionnaire in identifying 

children with alcohol exposure or FASD.81-86 Parental responses 

to questionnaires developed specifically for identifying children 

impacted by PAE or standardized measures used to flag 

aspects of alcohol teratogenesis typically had good to excellent 

specificity (overall range, 66%–96%; median, 83%); only one 

study using subsets of items from the Child Behavior Checklist 

yielded sensitivity in the poor to fair range.82 Sensitivity reported 

in these studies was poor to excellent (range, 54%–100%, 

median, 85%), with the lowest sensitivity reported in a study 

attempting to differentiate only pFAS in one analysis (54%).85 

Relatively few studies reported overall accuracy rates, which 

ranged from poor to excellent (range, 68%–94%; median, 71%). 

The wide range in predictive characteristics of these types of 

data was dependent on the definition of the predictor (PAE, 

pFAS, FAS, or FASD) and the comparison group used—typical 

healthy controls or controls with ADHD. Incomplete evaluation 

of those who screened negative also may have overinflated 

estimates in one study of the predictive characteristics as this 

method fails to include the possibility of false negatives in the 

screening process.84

Child performance measures 
Nine studies identified predictive characteristics of child 

performance measures and combinations of performance 

measures and other indicators of PAE or FASD.87-95 These ranged 

from quick screening tests to complex neurobehavioral batteries 

in isolation or in combination with dysmorphology information. 

Of these nine studies, one assessed the predictive characteristics 

of motor assessments,92 whereas another two studies looked 

at aspects of narrative speech only.94-95 Specificity ratings for all 

nine studies ranged from poor (45%) to excellent (100%), and 

sensitivity ratings ranged from poor (2%) to excellent (100%). 

Overall accuracy in these studies also ranged from poor (49%) to 

excellent (100%). Two of the nine studies compared individuals 

with PAE to both typical healthy control groups and to other 

clinical groups separately or in combination with the healthy 

control group.89,90
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that vary in ethnic, geographic, and cultural backgrounds—may 

help with eliminating these biases. 

Another limitation of some studies was that they provided 

predictive estimates but failed to sample the criterion within the 

entire pool of individuals screened.59,84 This approach occurred 

in larger screening cohorts where individuals who screened 

negative were not sampled further and were assumed to be true 

negatives. These assumptions may result in overestimation of the 

predictive characteristics of the biomarker or screening tool. 

Sensitivity and specificity characteristics are independent of 

the prevalence of the condition under investigation (e.g., PAE), 

but accuracy, PPV, and NPV are influenced by the rate of PAE or 

individuals impacted by PAE in a study’s sample (see Figure 1 for 

computational formulas). Considerable variation existed across 

studies in the ratios of affected and nonaffected individuals in 

the sample. In many studies, both groups were comparable in 

size, which results in an estimate of the predictive characteristics 

under circumstances where the prevalence of the condition in 

the sample is substantially higher than the rate anticipated in 

the general population. Changes in the sensitivity and specificity 

of a biomarker if the prevalence of the condition deviates from 

50% can result in reduced validity of estimates of the overall 

accuracy of a biomarker or screening tool.100 This suggests that 

the accuracy ratings commonly found for biomarkers of PAE and 

its impact may be overweighted by their high specificity and that 

these biomarkers are less predictive in real-world settings where 

the prevalence has been estimated to fall between 5 to 50 per 

1,000 children.18,19 Implementation of biomarkers or screening 

tools in clinical trials in the context in which they are intended to 

be used may help to evaluate the true accuracy of these tools.

The studies surveyed also differed in comparison samples 

used, with some studies including typical healthy controls and 

others attempting to differentiate offspring with PAE relative to 

other clinical groups who might present for diagnosis. Estimates 

of predictive validity of biomarkers or screening tools relative to 

typical healthy controls are often higher than those found when 

using a clinical comparison group. However, the latter approach 

provides a better estimate of the usefulness of a biomarker or 

screening tool to clinicians asked to determine if a given child 

has been impacted by their PAE. In evaluating biomarkers or 

screening tools, researchers should consider a tiered approach 

with a first evaluation relative to typical controls, followed 

by evaluation relative to other clinical groups to improve 

understanding of the clinical utility of the biomarker or screening 

tool. The final tier would then involve an actual clinical trial of 

the clinical utility of the biomarker or screening tool and an 

assessment of where it fits within a clinical diagnostic algorithm—

that is, whether it functions more as a screener that can flag the 

need for other diagnostic assessments or as an actual diagnostic 

tool, indicating its high concordance with the clinical endpoint.

Finally, the scalability of a biomarker or screening tool is 

also important to consider. The financial cost of the assay or 

test and the expertise needed to carry out an assessment can 

integrated in different ways (e.g., summed, any positive 

response, principal component analysis of several responses). 

Moreover, results appeared to vary as function of the context 

in which the maternal self-report was collected. In one study, 

maternal self-report of PAE was higher than PAE confirmed 

using biomarker data.52 In another study in the context of a 

health care environment, however, estimates of PAE using these 

methods were in the opposite direction.96 Even in studies of FAEE 

levels that were conducted in the same hospital setting where 

participants were assured of confidentiality, FAEE levels were 

dramatically higher when they were sampled from de-identified 

meconium, which did not require maternal consent, than when 

informed consent from the mother was needed.97 Mothers 

with the heaviest prenatal alcohol use were more likely to self-

select out of the study,98 most likely in response to the stigma 

associated with PAE.99 

A number of studies used other biomarkers to validate a novel 

biomarker. Convergent validity is useful in verifying the validity 

of the novel biomarker but limits the window of detection 

between biomarkers; moreover, threshold or cutoff values used 

to signal a positive test also varied. Often biomarkers reflect 

severe alcohol use disorder as they are indicators of damage 

to organs (e.g., liver) over a prolonged period; however, these 

methods often failed to capture the full range of FASD or PAE 

that can have adverse impact on a developing fetus. Other 

biomarkers are byproducts of the metabolism of alcohol and 

have limited windows for detecting PAE. For each biomarker, 

other factors also may reduce the validity of their prediction, 

including personal care and hygiene (e.g., corruption from 

chemicals used in hair and nail care), other foods that may 

produce alcohol metabolites during decomposition,97 and 

willingness of the mother to provide the biological sample. 

Some investigators have opted to use a combined approach, 

although costly, to predict PAE status35,45,53 to compensate for 

the individual weaknesses or limitations of any one method of 

identification of PAE.

Many studies used an FAS or FASD diagnosis as the outcome, 

but diagnostic formulations used in the field vary considerably, 

and evidence suggests that the degree of agreement across 

methods is low.12 The development of a consensus diagnostic 

formulation for individuals with FASD would be helpful 

in reducing error variance associated with the diagnostic 

formulations. As mentioned previously related to parental 

questionnaires as screening tools, use of clinical samples also is 

biased because it selects for individuals who sought care for the 

treatment of the child. This can result in circularity in defining 

the screening tool as the predictor when the screening tool may 

be drawn from the same construct domain or type of test used 

to categorize or diagnose the clinical group. Implementation of 

screening approaches across multiple samples—including both 

clinical and prospective cohorts of PAE from diverse populations 
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periods of neuroplasticity. Many biomarkers and screening tools 

related to PAE have good specificity, but their implementation 

requires further evaluation of the cost-benefit ratios of use 

within given environments and discussions regarding the ethics 

of implementation relative to patient privacy and autonomy. 

Much progress is needed in the development of biomarkers 

and screening tools to improve sensitivity, which is likely to 

be most valued by individuals affected by PAE and those who 

care for them as low sensitivity results in lost opportunities for 

harm reduction and early intervention. AUC values provide a 

tool for estimating predictions that capture both sensitivity 

and specificity elements but may obscure relative weaknesses 

in one or the other. Ultimately, final decisions on clinical 

implementation should include input from key stakeholders 

who may assign different value judgments to these predictive 

characteristics.

Improvements in the predictive characteristics of biomarkers 

and screening tools would have important ramifications for 

surveillance methods and clinical care of individuals negatively 

impacted by PAE. Surveillance methods that use biomarkers 

or screening tools currently are limited by the low sensitivity 

of most available biomarkers and screening tools because a 

negative test result does not exclude individuals who may be 

negatively impacted by PAE. Surveillance studies that assume 

those who screen negative are unaffected and do not conduct 

further evaluations therefore may be underestimating true case 

prevalence rates. The clinical use of biomarker or screening tools 

also has been limited by insufficient data on predictive utility 

characteristics in published studies. Moreover, implementation 

within clinical environments often only takes place if researchers 

are exploring the use of the biomarker or screening tool in 

their studies. Improved reporting of the predictive validity 

characteristics of these measures are needed before consensus 

could be reached to support larger-scale implementation of 

these biomarkers and screening tools. 

The field of alcohol teratogenesis initially sought to determine 

if PAE resulted in group differences from offspring not exposed 

to PAE on a variety of outcomes; however, future efforts also 

need to include efforts to help identify affected individuals. 

Predictive validity information moves beyond mean group 

differences and attempts to determine if a given measure’s 

dispersion is such that a threshold, cutoff value, or rule based on 

an outcome or a cluster of outcomes could be used to identify 

those impacted by PAE. In most cases, these differing aims could 

be achieved within the same study, using different analyses to 

help with identifying better biomarkers that can improve early 

identification and access to habilitative care. 

There are many promising areas where group differences 

have been explored but predictive characteristics have 

not yet been reported. One promising diagnostic tool may 

involve functional near-infrared spectroscopy,105,106 which 

assesses changes in oxygenation levels of brain tissue by 

shining near-infrared light through the scalp that is then 

dramatically limit the utility of a given biomarker or screening 

tool, particularly in countries with low resources. The gold 

standard for diagnosis is a multidisciplinary team assessment 

that includes at a minimum a physician who can assess alcohol-

related dysmorphology and a psychologist who can assess 

neurobehavioral impairment. Even if variations in diagnostic 

criteria utilized among existing clinics are resolved, this method 

of identification in no way can meet the needs of those impacted 

by PAE given the recent prevalence estimates. This is true in 

countries with considerable resources as well as in those with 

minimal resources. Therefore, when designing biomarkers or 

screening measures, it is important to consider to what extent 

the test can be implemented globally with limited expense 

and expertise. 

Limitations of This Review
This review was not intended to be a comprehensive review 

of each biomarker as several studies were eliminated that 

characterized biomarkers in different populations, established 

group differences, or estimated costs associated with 

implementation. Several existing reviews have provided in-depth 

discussions of one or more biomarkers or screening tools with 

greater details on the ease of collection, detection windows, 

limits of detection, costs, and feasibility of use.101-104 This article 

aimed to focus on the predictive characteristics of biomarkers 

and screening tools to assess PAE and its associated impact. 

The search process using the selected terms may have missed 

relevant articles as several additional papers were found among 

the references in those articles identified using the initial search 

terms. Also, most biomarkers did not have sufficient numbers of 

studies for a true meta-analysis given the variation in threshold 

or cutoff values used to define risk and in the predictor. As 

a result, the range and median value of data obtained from 

the articles were provided. Providing uniform data-reporting 

formats in future studies would help with subsequent attempts 

to integrate these types of studies.

Future Directions
The relative importance of the predictive validity characteristics 

depends on the goals of the screening and on the diagnostic 

algorithm in which the biomarker or screening tool is being used. 

PPV and NPV only incorporate validity of a positive or negative 

test signal, respectively, and are most useful for clinicians trying 

to interpret a biomarker or screening tool result relative to a 

clinical endpoint. Accuracy provides a summary of the overall 

correctness of the biomarker or screening tool, but does not 

fully capture its errors (i.e., false positives and missed cases). In 

cases where the costs of these errors are high, accuracy is an 

inadequate indicator of success. One could argue that this is the 

case for PAE and its associated impact, where false positives 

could potentially be stigmatizing and missed cases would limit 

opportunities for harm reduction and intervention during early 
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differentially reflected back to a sensor as different light 

wavelengths depending on whether or not the blood is 

oxygenated. Individuals with FASD show specific patterns of 

buildup of deoxygenated hemoglobin over time in response 

to prefrontal cortex activation that differ both from typically 

developing children and from those with other neurobehavioral 

impairments. Epigenetic changes, including DNA methylation, 

histone modifications, and other miRNAs associated with PAE, 

may also be effective biomarkers,107,108 although diagnostic 

analyses of these measures have rarely been reported. One 

promising study assessing changes in DNA methylation (i.e., the 

process of adding methyl groups to a DNA molecule) found 

that children with PAE and their mothers both had higher 

DNA methylation levels of proopiomelanocortin and PER2, 

a gene involved in regulating circadian rhythms, resulting in 

reduced expression of these genes. In contrast, postnatal 

choline supplementation, which increases the bioavailability of 

additional methyl groups after birth, resulted in reduced DNA 

methylation and increased expression levels of these stress-

regulatory genes.109 In addition, the health consequences of PAE 

are just beginning to be explored, and it may be important to 

determine to what extent these consequences may help identify 

individuals impacted by PAE. 

Going beyond group differences to establish the diagnostic 

test validity of an outcome relative to healthy children 

without PAE and then relative to other children with other 

neurobehavioral conditions will provide the needed information 

to evaluate effectively whether these potential biomarkers 

will have clinical utility and should be further evaluated in 

the context of a biomarker clinical trial. This transition to a 

systematic process of biomarker and screening tool evaluation 

is needed to address the public health need of improving early 

identification of individuals impacted by PAE so that harm 

reduction and habilitative care efforts can be implemented. 
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